本棚の設計?

本棚に必要な木材

本のサイズ

種類 サイズ
菊判 234x159
A5 210x148
B6 182x128

幅,厚さ,長さ,仕上げ

  • 幅は、目的とする本のサイズにも依るが、128~180程度が目安となる。面倒かもしれないが、2枚を何らかの方法で横につなげるという手もあるかもしれない。
  • 厚さは、簡易的に平行部の曲げ応力と垂直部の座屈を考慮すると、S-P-F-甲種-3級の値では、15mm程度あればギリギリ大丈夫そうである。12mmだと、ちょっと地震が起きたら平行部・垂直部ともに折れ曲がりそうである。18mmあれば安心である。杉材に変えると許容応力度は上がるがヤング率が下がり、曲げ応力への耐性は上がるが、座屈への耐性が下がり、よりシビアになる。材料力学に自信がないため、間違っていたらすみません。
  • 長さは、突っ張りの本棚を作る場合でも本体は2つに分けるため、配送の観点から1.8m(6F)-2m程度のものが望ましいであろう。
  • 仕上げは、少なくとも上下面、できれば4面ともプレーナー仕上げしてある必要がある。荒材は加工が困難であるらしいので、避けたい。内装用に接合用の加工を施されたもの(特に本実(ほんざね)加工、相じゃくり加工)がほとんどだが、こちらも避けたい。

厚さ(材料力学)

物性値

ヤング率、最大圧縮/引張/曲げ/剪断応力、安全率を指定する必要がある。 木材にはJAS規格で定められた等級区分製材と定められていない無等級区分製材があるが、我々が一般に入手可能であるのは無等級材である。 特に政令に従う必要はないのだが、

上の表は見づらかったり有償であったりするので、木造の設計メモやICBAの第9章 許容応力度及び材料強度を見れば良いと思われる。(前者は値が正しいかは確認できていない。)

材質
S-P-F-甲種-2級 17.4 11.4 21.6 1.8 9.6 0.50?
すぎ(無等級) 17.7 13.5 22.2 1.8 7.0 0.38?

本の重さ

漫画の密度を求めるのは難しいが、g/cm^3とする。厚さの平均はmmとするが、ジャンルに大きく依るだろう。(少年漫画等はもっと分厚くなり、A5版の四コマ漫画等はもっと薄くなるだろう。) 追記:漫画の密度は出版社等により大きく変わるようである。いくつか計測したところ、B6/178pの夢喰いメリー1巻が169g、A5/168pのゆるゆり2巻が293g、A5/118pのドージンワーク1巻は260gと、A5の芳文社の漫画は特に重めであるようである。下の計算はA5の芳文社の漫画の重量を過小評価していると思われる。

計算

よく分からないが、両脚絞端矩形ラーメンに当たると思われる。 つまり、地震等を考えない場合、普通の単純支持梁と両端ピン支持の長柱と同じとしてよいはず。(自信無し)

平行部

垂直部

は両端ピン支持の長柱ではとなるが、両端ピン支持?の自重を受ける長柱ではとなる。2 これらを使って計算すると、上述の結果になると思われる。

棚板・側板の価格一覧

材料は価格が安ければ良いため、SPF(松)か杉か合板が良さそうである。

  • SPFの場合、B6では1x6、それ以外では1x8となる。(1x7材は見たことがない。)

  • 杉の場合、長さは6尺(1820mm)が良いだろう。厚さは分(3mm)単位、幅は寸(30mm)単位となっているようで、体感的に3,4,(5,6,)12分(9,12,(15,18,)35)x3,4,6寸(90,120,180)が多い気がする。厚さがあまり本棚に適していないものが多い模様。中古品やプレーナー仕上げされていない材(荒材)が多いため、注意。

  • 合板の場合、大きさは3尺x6尺(910x1820mm)となる。厚さは15,18mmが良いだろう。

  • 楽天市場 レビュー件数順に検索した。https://search.rakuten.co.jp/search/mall/%E6%9D%89/100896/?s=5

ショップ名 サイズ 価格 価格/2m URL
DIY木材センター 杉 150x2000x15 1360 1360 https://item.rakuten.co.jp/mokuzai-o/sps152002000/?variantId=sps151502000
fiscu フィスク 杉 17.5x1820x18 4 3740+1750(0) 935 https://item.rakuten.co.jp/fiscu/81701820/
fiscu フィスク 杉 18x1820x12 4 3740+1750(0) 748 https://item.rakuten.co.jp/fiscu/81140001/
木一筋 楽天市場店 杉 85x2000x12 20 5670+2200 567 https://item.rakuten.co.jp/kihitosuji/sugi12x85x2000/
木一筋 楽天市場店 杉 70x2000x12 24 6760+2200 563.3 https://item.rakuten.co.jp/kihitosuji/sugi12x70x2000/
吉和民家 杉 120x910x12 24 4400+990 366.7 https://item.rakuten.co.jp/yoshiwa-minka/dsm910120-24/
岡元木材 杉 1x6 6F (140x1985x19) 890+2200 890 https://item.rakuten.co.jp/okamoku-s/i0000236/
岡元木材 SPF 1x6 6F (140x1830x19) 1460+2200 1460 https://item.rakuten.co.jp/okamoku-s/10000570/
東條製材所 楽天市場店 杉 7275x900x1213 48 4800+2000+0 566.7 https://item.rakuten.co.jp/toujyou-seizai/10000015/?s-id=bh_pc_item_list_name
木工ランド SPF 1x8 6F 810+150 810 https://www.mland.gr.jp/products/spf/001/
木工ランド 杉 1x6 6F 1080+100 1080 https://www.mland.gr.jp/order_select.php
カインズホーム SPF 1x6 6F 1180+NaN 1180 https://www.cainz.com/g/4528182160115.html
カインズ ホーム SPF 1x6 12F 1580+NaN 790 https://slowlifeblog.com/spf-wood-homecenter/
カインズ SPF 1x6 6F 709+NaN 709 https://slowlifeblog.com/spf-wood-homecenter/
コーナン(プロ) SPF 1x6 6F 548+NaN 548 https://slowlifeblog.com/spf-wood-homecenter/
カインズ ホーム SPF 1x8 6F 1080+NaN 1080 https://slowlifeblog.com/spf-wood-homecenter/
カインズ SPF 1x8 6F 982+NaN 982 https://slowlifeblog.com/spf-wood-homecenter/
コーナン(プロ) SPF 1x8 6F 980+NaN 980 https://slowlifeblog.com/spf-wood-homecenter/
コメリ SPF 1x4 6F 298+NaN 596 https://www.komeri.com/shop/g/g132611/
コメリ SPF 1x6 6F 1080+NaN 1080 https://www.komeri.com/shop/g/g469523/
コメリ SPF 1x8 6F 1480+NaN 1480 https://www.komeri.com/shop/g/g469523/
コメリ ラワン合板 15x1820x910 3980+NaN 663.3 https://www.komeri.com/shop/g/g253571/
満点木材 杉 180x1820x15-2 (取り寄せ) 347+? 347+? https://lumber.ocnk.net/product/192
満点木材 松 150x1820x15 6 8690 1448.3 https://lumber.ocnk.net/product/718
満点木材 桧 150x2000x15 6 本実 7150 1191.7 https://lumber.ocnk.net/product/1123
満点木材 桧集成 150x2000x15 6 本実 5819? 969.8 https://lumber.ocnk.net/product/1165
満点木材 桧 115x2000x15 8 本実 5280? 660? https://lumber.ocnk.net/product/893
満点木材 楢 120x2000x15 7 本実 9075 1296.4 https://lumber.ocnk.net/product/1023
満点木材 栗 120x2000x15 7 本実 8800 1257.1 https://lumber.ocnk.net/product/1133
満点木材 樺桜 130x2000x15 7 本実 8525 1217.9 https://lumber.ocnk.net/product/983
満点木材 樺桜 75x2000x15 12 本実 3980 663.3 https://lumber.ocnk.net/product/1194
羽目板屋どっとこむ 杉 135x1900x15 10 本実 9245 924.5 https://lumber.ocnk.net/product/718
ウッディヨネダ(※加工屋) 杉 150x1800x150 5346 5346 https://woodyyoneda-shop.com/products/detail.php?product_id=4
  • 満点木材では、欅は柱やテーブル用の高級材しか無く、楢、栗は12cmまで、桧は12cmは安いが15cmになると急に高くなる。樺(かば)は塗装品が安い。桧の75mm品は10mm厚。樺の75mm品は在庫が殆どない。
  • 本実(ほんざね)加工は下図のように凸部と凹部があり、下に切欠があるが、切欠に目を瞑り、凸部(雄実,おざね)は鑿(のみ)で落とせるらしいので落として凹部(雌実,めざね)を背板で隠せば使えるかも知れない。
  • 本実加工があることを逆手に取り、幅90mmの材を2つつなぎ合わせて幅180mmの本棚が作れるかもしれない。

出典:「激安 樺桜 幅広 カバザクラ オイル塗装 フローリング材床材」https://lumber.ocnk.net/product/983, 2023/08/08閲覧.

  • 相じゃくり加工ならあまり気にならないかも知れない。ただし相じゃくり加工はマイナーで杉以外ではあまりない。
  • コーナンでは無料トラック貸出があり、また配送を頼むと大きさに関わらず800円程度になるらしい。
  • ロイヤルホームセンター:不明https://www3.roymall.jp/shop/g/grhc2-038210/
  • 1台当たり8枚必要であるから、1枚1000円なら8000円かかる。

全体として18mmの杉材が入手しにくく、迷い中である。

背板

背板は合板、天井材の選択肢があると考えられる。

ショップ名 サイズ 価格 価格/1820x910mm URL
コメリ ラワン合板 4x1820x910 1350+NaN 1350 https://www.komeri.com/shop/g/g1270996
コメリ ラワン合板 5.5x1820x910 1550+NaN 1550 https://www.komeri.com/shop/g/g1271005/
満点木材 杉 330x1820x7 6 5489 2744.5 https://lumber.ocnk.net/product/540
三祐木材 桧合板 5.5x1820x910 1920+2000 1920 https://www.sanyumokuzai.co.jp/product/%E3%80%90%E3%81%B2%E3%81%AE%E3%81%8D%E3%80%91-%E6%A7%8B%E9%80%A0%E7%94%A8%E5%90%88%E6%9D%BF%E3%80%80-%E7%AF%80%E3%81%AA%E3%81%97%E3%80%803x6%E3%82%B5%E3%82%A4%E3%82%BA-%E3%80%90%EF%BC%94%E3%82%AB/

ニス

1台あたり8枚使うため、裏表合わせて必要で、ニスは2回塗りで約0.1L/m^2必要であるから、440mL程度必要である。和信のニスが最もメジャーであるようだが、3000円/0.7L9600円/4kgもする。 さらなる仕上がりを目指す場合サンディングシーラーを使うようである。こちらも1回塗りで約0.1L/m^2必要2700円/0.7L8000円/4kgする。 したがって塗料だけで2000~5700円程度かかる。

既製品

※Amazonのリンクを踏んでも当方にお金は入りません。

本棚を販売している企業が出している動画であることに留意する必要があるが、やはり突っ張りであると安心な気がする。


www.youtube.com

ラック

ラックは事実上製造しているのが一社(OEM,台湾製?)しかないようである。OEM先を特定しようとしてAliexpressや画像検索等で大分調べたが、うまく行かなかった。 棚板をバラで売っているところも見つけられなかった。山善、菊屋等の商社が販売しているようである。 側板の網目が3マスのものは幅63cm, 78cm, 92.5cmを確認しており、4マス 最下段の板の下にも本を置けば9段になる。本棚を買うよりコストパフォーマンスが相当良いが、ラックを採用するとB6だと段あたり12kg、A5だと16kg程度かかるため、場合によっては耐荷重オーバーになる。 天井高が2.2m程度の場合A5ならこれでピッタリだが、B6の場合は1段分スペースが余ると思われる。天井高が2.4m程度の場合は、更に1段分余ることになる。 奥行き24cmがあれば、ちょっと壁面から離せばB6を二段重ねに出来、1350~1500冊程度入りそうだが、より耐荷重オーバーになる。

10840円,幅78,奥行24,8段 [asin:B00MUI17RK:detail]

13400円,幅78,奥行25,8段 [asin:B003WIZ75A:detail]

21,980円,幅92.5,奥行き25,10段 [asin:B00V7JZ71A:detail]

11,990円,幅68,奥行き34,8段 [asin:B0BSDXTVVP:detail]

12,990円,幅88,奥行き34,8段 [asin:B0BSDYD96J:detail]

16000円,幅63,奥行き25,8段,部分的に背板?がある変種 [asin:B094VBCV8F:detail]

17999円,幅78,奥行き25,8段,部分的に背板?がある変種 [asin:B094V7GDB7:detail]

本棚

突っ張りまでいくほど高いものはほぼ山善の独壇場になっている模様……。

19911円,幅81,奥行15.5,9段 [asin:B09YXD6PQD:detail]

24800円,幅101,奥行15.5,9段 [asin:B09YXDHDL8:detail]

17392円,幅70,奥行18,10段 [asin:B07R453XHZ:detail]

突っ張りを諦めると途端に安くなる。

9980円,幅89,奥行28.8,高さ180.0,8段 [asin:B08D6KJ84X:detail]

シューズラック

流石にシューズラックは駄目かな……

2380円 [asin:B09LH1JFFM:detail]

感想

ということで厚さ18mmの板で頑丈な本棚を作ろうものなら12000円かかるので、自分の人件費と比べると大して得にならず、時間がかかりすぎるので(調べるだけで何日も無駄にした……)ちょっと保留。

追記

結局YahooショッピングでTP-5405を実質7620円~で4個購入した。既存の本棚に新たに突っ張り棒を設置するのはコストが掛かり面倒でもあるため、耐震性の観点から古い本棚はこれらで順次取り替えることにした。


  1. 林産試だより2006年2月号 Q&A 先月の技術相談から 木材の強度の基準値↩︎

  2. 自重による長柱の座屈↩︎

audacity

ショートカット一覧

ラベルの追加

  • Xでカーソルを更新しながら再生
  • Ctrl+Bでラベルを追加

書き出し

  • Ctrl+Shift+Lまたはファイル(F)>書き出し(E)>複数ファイルの書き出し(M)...
  • 書き出し

PC用中古テレビの選び方

The Lab Page - RTINGS.com 液晶テレビをPCモニタとして使うスレ Part72

どのようなテレビを選ぶか?

パネルの種類

  • ダークモードを多用するため、VAは除外。
  • フリッカーが気になるため、大部分のフリッカーのある有機ELも除外。
  • QLEDは除外しない。

画素数、フレームレート

  • 4K120p入力(価格コム,5ch,6.7万,2021/03) 4K120p表示ができるモニターは2015年頃から存在するものの、入力できる液晶はここ最近になってできた。5chでどの機種がよいか日々議論が交わされているが、人によって求める機能が異なるためか、これといった結論が出ていないようである。(ほしい。)
  • 8K(価格コム,11.7万,2017/08)
  • 4K(価格コム,3.7万2015/04)

大きさ

  • 43インチ未満の4kテレビはほとんど無いため、下限は43インチとする。
  • 65インチ以上は価格が急上昇する上、FHD32インチ以上相当とやや粗いため、上限は55インチとする。
  • 55インチが大きすぎるかは人による。(視力や机の広さ、体格などによる。)筆者はやめておこうと思う。

年式

年式 [サイズ] -ジャンク」で2023/03に検索したときの落札相場を下の表に示したが、いくつか注意点がある。

  • 中古テレビはあまりに画面割れによる故障品が多く、ノイズが多い。
  • 逆に、ジャンクと書いてあってもリモコンやB-CASカードが無いだけの場合がある。(特にB-CASカードはこの用途ではなくとも何も困らない。)
  • 「4K」とわざわざ商品説明に書かないものが多いため、検索ワードに「4K」を入れなかった。その結果、特にまだ2Kテレビが製造されていた2015年あたりでは、2Kテレビが混ざっている可能性があるため、要注意である。
年式 43 49
2015 落札価格 最安 1,000円 最高 39,800円 平均 14,261円 落札価格 最安 3,450円 最高 40,000円 平均 16,221円
2016 落札価格 最安 3,800円 最高 41,500円 平均 19,380円 落札価格 最安 2,100円 最高 45,000円 平均 22,240円
2017 落札価格 最安 1円 最高 55,000円 平均 22,018円 落札価格 最安 1,700円 最高 60,000円 平均 24,635円
2018 落札価格 最安 1,000円 最高 57,800円 平均 24,895円 落札価格 最安 540円 最高 72,000円 平均 31,757円
2019 落札価格 最安 1,000円 最高 77,000円 平均 33,672円 落札価格 最安 10,638円 最高 99,501円 平均 44,848円
2020 落札価格 最安 1,800円 最高 87,000円 平均 33,217円 落札価格 最安 15,500円 最高 105,000円 平均 47,399円
2021 落札価格 最安 5,250円 最高 150,000円 平均 44,671円 落札価格 最安 30,306円 最高 90,200円 平均 61,499円
2022 落札価格 最安 2,000円 最高 101,200円 平均 47,856円 落札価格 最安 14,520円 最高 125,000円 平均 82,890円

送料

らくらく家財宅急便がよく使われる。大型家具家電の輸送 らくらく料金検索 | ヤマトホームコンビニエンス

サイズ 家財便ランク 料金
43 B 4400-
49 B-C1 4400,7535-
55 C 7535-
65 C-D 7535,10945-

というわけで、再現性がある落札価格としては、1.6万が下限であるように思う。(逆に新品が3.7万で買えることを考えれば、この値段で買えなければあまり中古で買う意味が無い気がする。)

応答速度

ゲームに適した液晶テレビ126台目©2ch.net

ということで2015-16年の4Kテレビを調べることになったが、かなり情報がまとまっていない。

  • SONYは30ms程度。SONYは機種が同じでもサイズによってパネルがVAであったりIPSであったりすることがあるため注意。 2
  • LGは2015年は50ms程度、2016年では25ms程度。3
  • 東芝REGZA G20Xは11.3msと優秀。4

Panasonic5, Samsung, TCL, Hisense, Sharp, VizioはVAのため除外。

この他にもFUNAI等メーカーは存在するが、つかれたので割愛。 60p入力しかできない倍速液晶は、性質上表示開始時間が0.5フレーム分(8ms)遅延する。


  1. SONY BRAVIAやPanasonic VIERAではいける場合がある模様(謎) [^1] [^2]↩︎

  2. TV Table Tool - RTINGS.com↩︎

  3. TV Table Tool - RTINGS.com↩︎

  4. 4K/HDRテレビなのにPCモニターと遜色ない低遅延だった『REGZA 43G20X』 | PSちゃんねる Pro↩︎

  5. Compare Flat-Screen TV Reviews By Brand, Rating, Size & Price 40ms程度↩︎

Pythonで非同期の雰囲気

概要

重い処理を同時実行したいときに、非同期を使う。Pythonの非同期処理には2つのライブラリが存在し、以下のような簡単な方法でどちらを使うべきか知ることができる。

  • asyncio

    重い処理がasyncioに対応しているとき。(I/O待ちであるとき=await asyncio.sleep(n)がその関数の中で呼ばれているとき。)

  • concurrent.futuresProcessPoolExecutorおよび** joblibParrarel**

    重い処理がasyncioに対応していないとき。(CPUが動いているとき。)

どうでもいい注意

  • joblibで使われるlokyはこのconcurrent.futuresが元になっているが、ローカル関数が使えたり、(デッドロックせずに)入れ子された(nested)非同期処理が可能になるため、より推奨される。
  • ProcessPoolExecutorは内部でmultiprocessingモジュールを使っているが、このモジュールを直接使うのは特別な理由がない限り推奨しない。
  • これらはasyncio.loop.run_in_executorで併用できるが、あまり使われない。
  • わかりやすくするためにtasksresultsを分けて書いたが、joblibでは普通一行で書く。

asyncio

1
2
3
4
5
6
7
8
9
10
11
12
13
import asyncio

#目的の関数
async def function():
pass

async def loop():
tasks = [asyncio.create_task(function()) for i in range(10)]
results = await asyncio.gather(*tasks)
return results

def main():
results = asyncio.run(loop)

joblib

1
2
3
4
5
6
7
8
9
10
11
12
13
import joblib

#目的の関数
def function():
pass

def loop():
tasks = [joblib.delayed(function)() for i in range(10)]
results = joblib.Parallel(n_jobs=-1)(tasks)
return results

def main():
results = loop()

concurrent.futures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import concurrent.futures
# import loky

#目的の関数
def function():
pass

def loop():
with concurrent.futures.ProcessPoolExecutor() as executor:
# with loky.get_reusable_executor() as executor:
tasks = [executor.submit(function) for i in range(10)]
results = [future.result() for future in concurrent.futures.wait(tasks).done]
return results

def main():
results = loop()

ProgressBarをつける

1
pip install tqdm

asyncio

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import asyncio
# import tqdm
import tqdm.asyncio

#目的の関数
async def function():
pass

async def loop():
tasks = [asyncio.create_task(function()) for i in range(10)]
# results = [await f for f in tqdm.tqdm(asyncio.as_completed(tasks), total=len(tasks))] # 古いやり方
results = await tqdm.asyncio.gather(*tasks)
return results

def main():
results = asyncio.run(loop())

joblib

1
pip install tqdm_joblib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import joblib
from tqdm_joblib import tqdm_joblib

#目的の関数
def function():
pass

def loop():
with tqdm_joblib():
tasks = [joblib.delayed(function)() for i in range(10)]
results = joblib.Parallel(n_jobs=-1)(tasks)
return results

def main():
results = loop()

concurrent.futures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import concurrent.futures
import tqdm

#目的の関数
def function():
pass

def loop():
with concurrent.futures.ProcessPoolExecutor() as executor:
tasks = [executor.submit(function) for i in range(10)]
results = [future.result() for future in tqdm.tqdm(concurrent.futures.as_completed(tasks), total=len(tasks))]
return results

def main():
results = loop()

音声合成と著作権

注意:筆者は全く法律に詳しくなく、またよく間違った内容の記事を放出します。

データセット

  • 音声の内容(読み上げた文章)には作家の著作権が認められる。 1
  • 音声には実演家の著作権はなく、演技に創作性がある場合に限り、著作隣接権が認められる。 2
  • 音声に利用規約がある場合、機械学習にあたっては、著作権法第三十条の四は強行規定であるかどうかが問題になる。 強行規定ではなくこのような状況は信義則に違反しないとする説が有力であるため、利用規約は有効である可能性が高いが、3 そうでないとする意見も多数存在する。4 また、定型約款の表示方法によってはみなし合意が成立するかどうかが問題になる場合がある。 5 6

合成音声

  • 合成音声には実演家の創作性は残らないため、実演家の著作(隣接)権は認められない。7
  • 音声合成ソフトウェアを道具として用いたと認められる場合、音声合成ソフトウェアのユーザーに著作権が認められる場合がある。8
  • 多くの音声合成ソフトウェアでは出力音声に対して企業の著作権のような権利を認めるように利用規約を作っている。 合成音声は通常著作物ではないため、著作権法の各条文が強行規定であるかどうかに関係なく、契約自由の原則よりこのような利用規約は通常有効である?[要出典,独自研究]

参考文献

我々が弁護士の見解を伺ったところ,まず生声については,用意された短い文章を淡々と読み上げた録音音声データに過ぎず,著作物とは言えないと考えられ,また,その読み上げの際に芸術的な性質を有する演技が行われているわけでもないため,著作隣接権の対象たる実演にも該当しないと考えられるとのことである.

その生声からコエ生成エンジンによりコエが生成されるが,コエは単なるその人の声の特徴を抽出したエッセンスデータであるため,著作物とは言えない.

合成音声は,作家の創作物であるテキストの複製物という扱いになり,作家の著作権が合成音声にも及ぶと考えられる.通常の収録音声の場合,声優などの読み上げた者(実演家)が芸術的な演技を伴って創作されたと見なされた場合には,実演家にも著作隣接権が認められることがあるが,合成音声の場合,声優は合成音声の生成において何も芸術的な演技を行わないため,著作隣接権も認められないと考えられる.尚,ユーザの読み調整により合成音声に創作的な表現が顕れるような場合には,合成音声は作家の創作物のユーザによる翻案物という扱いになり,権利関係は,作家が原著作物であるテキストの著作権を,ユーザが翻案物たる合成音声の著作権を有し,作家は合成音声について原著作者として権利を行使できる,ということになる.

声の権利化と流通を実現する音声合成サービス―一般人から有名人まで多種多様な声が使える新しいプラットフォーム―より引用


  1. 声の権利化と流通を実現する音声合成サービス―一般人から有名人まで多種多様な声が使える新しいプラットフォーム―↩︎

  2. 声の権利化と流通を実現する音声合成サービス―一般人から有名人まで多種多様な声が使える新しいプラットフォーム―↩︎

  3. 著作権法の柔軟な権利制限規定とオーバーライド問題 | STORIA法律事務所↩︎

  4. 著作権法のオーバーライド問題 - 基素基↩︎

  5. 著作権法の柔軟な権利制限規定とオーバーライド問題 | STORIA法律事務所↩︎

  6. 民法改正から1年、WEBサービスの利用規約実務のいまと再確認のポイント(前編) - BUSINESS LAWYERS↩︎

  7. 声の権利化と流通を実現する音声合成サービス―一般人から有名人まで多種多様な声が使える新しいプラットフォーム―↩︎

  8. 声の権利化と流通を実現する音声合成サービス―一般人から有名人まで多種多様な声が使える新しいプラットフォーム―↩︎

VPS, VDS, DS, VMの選び方

要約

  • まずは各プロバイダーが提供している無料クレジットを使い倒そう。
  • 既に無料クレジットを使い倒している場合やサーバーを頻繁に変えたくない場合は、ServerHunterでCPU型番をGeekbench v5のスコアに照らし合わせて性能を予想しながら、なるべくSetup Feeが少なく日割りで契約できる好みのサーバーを探し出し、地雷回避のためTrustPilotでプロバイダーの評判を一応確認してから、契約しよう。

サーバーの種類

  • Dedicated Server 一つのサーバーで一つのインスタンスを実行する。普通のパソコンと同じ。
  • Virtual Server 仮想化を用いて複数のインスタンスを一つのサーバーで実行する。Virtual Private Server(VPS)とも呼ばれる。特に物理CPUと同等の性能が保証されているものをVirtual Dedicated Server(VDS)と呼ぶ。(VDSもVPSの一種である。)

仮想化技術の種類

VPSでよく用いられるプラットフォーム仮想化ソフトウェアには、以下の2つがある。

  • KVM

AWS C5 インスタンス1, GCP2

  • OpenVZ

FastVM, Clovux3

その他の仮想化ソフトウェアの詳細についてはComparison of platform virtualization software - Wikipediaを参照。

仮想化ソフトウェアは各インスタンスに仮想コア(vCPU)を割り当てる。ところで、実はこの2つのソフトウェアはどちらもvCPU数を物理CPU数よりも大きくすることができる。vCPU数はしばしば性能の指標とされるが、実際の性能を保証するものでは全くないため、要注意。4 5 KVMではCPUが共有されないというのは誤情報である。ただし、OpenVZはより少ないリソースで性能を出すことができるため、利益を重視している業者によく使われがちであるという意見もある。6 7

Setup Fee と契約期間

サーバーの初回契約時にSetup Feeを要求する業者があるが、AWS EC2が秒単位で使える事を考えると、実際にセットアップ自体にお金がかかるとは思えない。むしろ、Setup Feeは性能の悪いVPSを提供して顧客が1ヶ月でやめることを事前に想定して、2ヶ月分とっておこう+既存顧客を取っておこうという意図があるように思われる。Setup Feeを要求しない業者はたくさんあるので、最初からサーバーを長く使おうとSetup Feeを飲み込むべきではない。むしろ、契約し始める最初こそ、いろいろなプロバイダーで失敗することを想定して、なるべく無料トライアルや1時間・1日単位で契約できるプロバイダーを探すべきである。1ヶ月契約、特にSetup Feeを要求する1ヶ月契約は地雷である。

有名なプロバイダーでの無料クレジットの一覧

Linodeなどの一部のプロバイダーは特定のリンクから契約しなければ無料クレジットをもらえない場合がある。このとき普通に登録して無料クレジットがもらえなかったり、アフィリンクを踏んで意図せず知らない人にお金が入ったりすることが無いように注意が必要である。また、OCI(コア数に制限), DigitalOcean(Sharedのみ)8, GCP9など無料クレジットでは/支払履歴がなければ性能の低いインスタンスしか使えないプロバイダーもある。

Service Credit ($) Expiration (Month)
Azure 200 1
GCP 300 3
OCI 300 1
IBM 200 1
DigitalOcean 100 2
Linode 100 2
Vultr 50 1
OVH 100 2
Tencent Cloud 50 1

推奨するプロバイダー

国内VPSは英語で物事を検索するという発想が無い人のためにあるように思われるため、除外。その他上の基準に従って適当に検索していくともう両手で数えるほどしか残らないが、ここに要件を足してServerHunterに載っていないAWSなど(意外と安い)も追加で検討していき、地雷回避をやれば、わりあいと決まるのではないだろうか。


  1. https://www.publickey1.jp/blog/17/awskvmc5.html↩︎

  2. https://en.wikipedia.org/wiki/Google_Compute_Engine↩︎

  3. https://www.serverhunter.com/↩︎

  4. https://serverfault.com/questions/435231/can-kvm-cpu-assignment-count-differ-from-physical-hosts-cpu-count↩︎

  5. https://serverfault.com/questions/313333/kvm-and-virtual-to-physical-cpu-mapping↩︎

  6. https://www.webhostingtalk.com/showthread.php?t=1814063↩︎

  7. https://lowendtalk.com/discussion/85194/is-openvz-bad-allows-overselling↩︎

  8. https://www.digitalocean.com/community/questions/how-do-i-increase-my-droplet-limit↩︎

  9. https://stackoverflow.com/a/63188016/14819077↩︎

Pythonで非同期コードをテストする方法

非同期でpytestを使う場合、pytest-asyncioを使うことになるが、やや使いにくいのでunittestのIsolatedAsyncioTestCaseを使った。

実装例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from asyncio import sleep
from unittest import IsolatedAsyncioTestCase
# test case を得るために非同期関数を呼ばなければいけないときが一番ややこしい。
async def add(a, b) -> int:# function to test
await sleep(1)
return a + b

async def get_test_case(x) -> tuple[int, int]:
await sleep(1)
return x, 2*x

@parameterized_class(('testcase_func', 'testcase_param', 'answer'), [
(staticmethod(get_test_case), 2, 6),
(staticmethod(get_test_case), 3, 9),
])
class TestClass1(IsolatedAsyncioTestCase):
a: int
b: int

async def asyncSetup(self) -> None:
self.a, self.b = await self.testcase_func(testcase_param)

async def test_add() -> None:
self.assertEqual(add(self.a, self.b), self.answer)

最適な換気量

二酸化炭素濃度と人間のパフォーマンスの関係

二酸化炭素濃度と人間のパフォーマンスには確かに相関関係があるである。上の2つの図からは、建築基準法で指定されている1000ppmであっても認知機能に影響があることがわかる。この現象には、NLRP3とIL-1βなるものが関係していると一番下の図に書いてあるが、よくわからなかった。

二酸化炭素濃度わずかでも高いと認知機能に限らず様々な問題が起きると一番下の図の論文は主張している。

出典:Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments | Environmental Health Perspectives | Vol. 124, No. 6 https://ehp.niehs.nih.gov/doi/10.1289/ehp.1510037#pane-pcw-references

出典:Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance https://www.semanticscholar.org/paper/Is-CO2-an-Indoor-Pollutant-Direct-Effects-of-CO2-on-Satish-Mendell/309e7ebea6e880cd2393bc38596933813022d335

出典:Direct human health risks of increased atmospheric carbon dioxide | Nature Sustainability https://www.nature.com/articles/s41893-019-0323-1

人間からの二酸化炭素発生量

エネルギー代謝率(RMR) 作業程度 二酸化炭素発生量[m^3/(h・人)]
0 安静時 0.0132
0~1 極軽作業 0.0132~0.0242
1~2 軽作業 0.0242~0.0352
2~4 中等作業 0.0352~0.0572
4~7 重作業 0.0572~0.0902

「5.1 完全混合濃度に基づく基本必要換気量」http://tkkankyo.eng.niigata-u.ac.jp/HASS/5_1.html より引用

非定常濃度方程式

室内ガス濃度、導入外気ガス濃度(定数)、単位時間あたりガス発生量(定数) $M QV$に対し、

変形して

ところで

より、

積分して

初期条件とすれば、

許容室内ガス濃度$ K_m Q_m $は、

最適制御

春秋ならば窓を開け放して$ Q 調使調使 T_o T_r 調 Q Q $が低下し電気代が下がる。したがって、一定量の換気をし続けた方がいいということになる。

代入

m^3/h, とする。には適宜人数を掛ける。

必要換気量

Bang-Bang制御する場合に窓を開ける頻度

1畳は1.62m^2、部屋の高さは普通2.4-2.5mであるから、畳の場合時間ごとに換気する。

面積[畳] 時間[h]
4 1.14
6 1.72
8 2.29
10 2.86

参考文献:「必要換気量の求め方|三菱電機 空調・換気・衛生」https://www.mitsubishielectric.co.jp/ldg/ja/air/guide/support/knowledge/detail_01.html

この値は本当に正しいか?

筆者はNDIR式のCO2モニタを購入し検証したところ、換気のない6畳間洋室で420ppmから1020ppmに上昇するのに2時間半程度かかった。(部屋にこもり続けた。)これは理論値の1.45倍である。図のグラフはやや上に凸であるように見えるため、部屋が完全に密閉されているわけではないことが原因であろう。

ここ数日CO2モニタを眺めていた感想だが、筆者の6畳間洋室では以下のようであるに思えるが、数値は時により変動し、部屋に居続けるのも大変であり、夜間はPCを落としているのでログが取れずうまく検証できていない。さらに、都市部では排気ガスと交通量の変化の影響で、時間帯により外気のCO2濃度は25-50ppm異なる、ご飯を食べたあとは消化により代謝が上がりCO2濃度の増加が早まるなど、他の誤差要因も存在する。

窓の状態 Q
密閉 20
2つ5mm 30
2つ12mm 40

将来

All forcing agents CO2 equivalent concentration.svg

EfbrazilCC 表示-継承 4.0, リンクによる

数十年後では大気中のCO2濃度は無視できないほど上昇する可能性があり、その場合上の計算を改める必要があるだろう。

プロット

二酸化炭素濃度の時間推移

換気後を初期条件とした場合における、換気量と二酸化炭素濃度の最大値の関係

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Licensed under CC0: https://creativecommons.org/publicdomain/zero/1.0/deed.en
from numpy.typing import ArrayLike
import numpy as np
import matplotlib.pyplot as plt
import matplotx.styles
from pandas import Series, Timedelta, TimedeltaIndex
import pandas as pd

plt.style.use(matplotx.styles.dracula)

def calc_k(k_o: float, m: float, q: float, v: float, t: ArrayLike) -> ArrayLike:
"""Calculate the concentration of a fluid in a room.

Parameters
----------
k_o : float
Concentration of the fluid in the outside air.
m : float
Generation rate of the fluid.
q : float
Ventilation rate of the room.
v : float
Volume of the room.
t : ArrayLike
Time.

Returns
-------
ArrayLike
Concentration of the fluid in the room at time t.
"""
if q == 0:
return k_o + m / v * t
elif q < 0:
raise ValueError("q must be positive.")
return k_o + m / q * ( 1 - np.exp(-q / v * t) )

def calc_k_fin(k_o: float, m: float, q: float) -> float:
"""Calculate the concentration of a fluid in a room.

Parameters
----------
k_o : float
Concentration of the fluid in the outside air.
m : float
Generation rate of the fluid.
q : float
Ventilation rate of the room.

Returns
-------
float
Concentration of the fluid in the room at time t=np.inf.
"""
if q == 0:
return np.inf
elif q < 0:
raise ValueError("q must be positive.")
return k_o + m / q

k_o = 420e-6
m = 0.0132 # per hour
ns = [4, 6, 8, 10]

# plot change in concentration over time
t = np.linspace(0, 3, 480)
qs = [0] + (22 * (2. ** np.arange(-3, 3))).tolist()
fig, axes = plt.subplots(len(ns), 1, figsize=(10, 16))
for n, ax in zip(ns, axes):
ax.set_title(f"{n} tatami mats")
ax.set_ylabel("CO2 Concentration (ppm)")
ax.set_xlabel("Time (h)")
v = n * 1.62 * 2.44
for q in qs:
k = calc_k(k_o, m, q, v, t)
k = Series(k, t) * 1e6
k.plot(label=f"q={q}", legend=True, ax=ax, grid=True)
fig.tight_layout()

# plot final concentration vs ventilation rate
fig, axes = plt.subplots(len(ns), 1, figsize=(10, 16))
qs = 22 * (2. ** np.linspace(-3, 3, 100))
for n, ax in zip(ns, axes):
ax.set_title(f"{n} tatami mats")
ax.set_ylabel("Final CO2 Concentration (ppm)")
ax.set_xlabel("Ventilation Rate (m^3/h)")
ax.grid(visible=True, which="major", axis="both")
ax.grid(visible=True, which="minor", axis="both", linestyle="--")
Series([calc_k_fin(k_o, m, q) * 1e6 for q in qs], qs).plot(ax=ax, grid=True, logx=True, logy=True)
fig.tight_layout()

XREA FreeにMediaWikiを導入する

導入

  • ファイルを編集することが多いため、あらかじめ作業ディレクトリを作り、VSCodeなどでディレクトリを開くと楽になる。

XREA

PHPの設定

  • /public_html/.fast-cgi-bin/php74.iniをダウンロードして、以下を追記し、上書きする。これはphpのバージョン設定の前に行わない反映されない。
/public_html/.fast-cgi-bin/php74.ini
1
2
extension=/usr/local/lib/php/extensions/php74_xmlreader.so
extension=/usr/local/lib/php/extensions/php74_xmlwriter.so

1

XREAでは、php70以後でこれを行わないとXMLReader/Writerが使えず、MediaWiki上で画像をアップロードできなくなる。

  • 左の"サイト設定"からPHPのバージョンをphp74に設定する。https://cp.xrea.com/database/mysql/
  • 左の"データベース設定"を選択し、右のボタンからMySQLのデータベースを新規作成する。

Tiny File Manager

Mediawikiのインストール

  • Mediawikiの最新版をzip形式でダウンロードする。https://www.mediawiki.org/wiki/Download Tiny File Managerは.tar.gz形式の解凍ができない。
  • (domain_name)/wにアクセスする。
  • 好きなように設定する。
  • SQLの設定では、データベース名とデータベースのユーザー名が同じになるはずである。筆者の場合は以下のようになる。

  • 管理者のパスワードは忘れないようにする。
  • 詳細設定に進み、拡張機能を全てオンにしてしまうと楽である。(後からでもできる。)

確認

  • LocalSettings.phpをアップロードする。
  • ログインする。
  • 画像のアップロードができることを確認しておく。
  • おそらく画像がリンク切れのような表示になり、閲覧することが出来ない。この場合は、(domain_name)/public_html/w/images/.htaccessをダウンロードして削除する。

更に使いやすくする

  • 以下のサイトに従って、Urlを短縮する。Include 404 thumbnail handler configのチェックボックスを外し、I don't have root accessボタンを押すとうまく行った。 https://shorturls.redwerks.org/
  • ロゴを変更する。135x135または150x150の画像を用意し、LocalSettings.phpを以下のように書き換える。
LocalSettings.php
1
$wgLogo = "{$wgScriptPath}/images/logo.png";

2

  • アイコンを変更する。favicon.icoを以下のサイトで作成し(domain_name)/public_html/にアップロードする。https://ao-system.net/favicon/

参考文献


  1. メモぶログφ(´д`): XREAでXMLReader と XMLWriter PHP モジュールが有効なんだけど実は無効の時の対策↩︎

  2. Manual:FAQ - MediaWiki↩︎

ヤマハ P120-S 基板修理

症状

  • DCプラグがぐらぐらする。接触不良。

原因

  • 半田の劣化
  • 以前半田が劣化していたためはんだ付けしたが、また同じ症状になった。

修理のやり方

引用:YAMAHA P-120Sの分解&修理 - しぐなす!そにか!~忘備録~

1. 中ネジ×9を外す

2. 上蓋を取り外す

注:戻すときは、赤枠部分のコネクタが接続されているか確認すること。これが接続されていないと、起動時にSCNと表示される。

SCN

3. 右側の長ビス×4を外す

4. アースを外す

5. 横蓋を取り外す

6. 横蓋内のネジ×6を外す

7. 基板を取り外す

戻すときは逆の手順を踏む。ただしときどき正しく電子ピアノが起動するか確かめると良い。